A REMARK ON MUMFORD'S COMPACTNESS THEOREM[†]

BY

LIPMAN BERS

ABSTRACT

It is shown that a recent compactness theorem for Fuchsian groups, due to Mumford, remains valid for groups containing elliptic and parabolic elements.

A Fuchsian group Γ is a discrete subgroup of the real Möbius group G $= SL(2,\mathbb{R})/\{\pm I\}$. We will establish the following extension of a recent result by Mumford.

THEOREM 1. *The set of conjugacy classes* IF] *of Fuchsian groups F, such that* mes (G/Γ) *is* $\leq \mu < \infty$ *and the absolute value of the trace of every hyperbolic element* γ *of* Γ *is* $\geq 2 + \varepsilon > 2$ *, is compact.*

We recall that Fuchsian groups Γ with mes $(G/\Gamma) < \infty$ are finitely generated. Hence the space of conjugacy classes $\lceil \Gamma \rceil$ of all such groups has a natural topology: a (distinguished) neighborhood V of Γ is determined by a sequence $\{\gamma_1, \cdots, \gamma_r\}$ of generators of Γ and a neighborhood v of the identity in G; a conjugacy class $[\Gamma']$ belong to V if and only if there is an isomorphism χ of Γ onto a $\Gamma'' \in [\Gamma']$ such that $\chi(\gamma)$ is parabolic if and only if γ is, and $\chi(\gamma_i) \circ \gamma_i^{-1} \in v$ for j $= 1, ..., r.$

In [5] Mumford proved a general compactness theorem and obtained, as a corollary, a statement analogous to Theorem 1, under the additional hypotheses that all groups Γ considered are torsion free and all quotients G/Γ are compact. He stated that the corollary can be obtained by an elementary argument. Our proof of Theorem 1 is an extension of this argument.

t Work partially supported by the National Science Foundation.

Received June 15,1972.

Vol. 12, 1972 MUMFORD'S COMPACTNESS THEOREM 401

A Fuchsian group Γ acts on the upper half plane U as a group of conformal automorphisms; the condition mes $(G/\Gamma) \leq \mu$ is equivalent to the condition $\int f_{U/\Gamma} y^{-2} dx dy \leq c\mu$ where c is a universal constant. Every group Γ satisfying this condition has a *signature*

$$
\sigma = (p, n; v_1, \cdots, v_n)
$$

where p and n are integers, the v_i are integers or the symbol ∞ , and

$$
p \geq 0, \quad n \geq 0, \quad 2 \leq v_1 \leq v_2 \leq \cdots \leq v_n \leq \infty,
$$

(2)

$$
A(\sigma) = 2\pi (2p - 2 + n - \frac{1}{v_1} - \cdots + \frac{1}{v_n}) > 0.
$$

We have that $\iint_{U/\Gamma} y^{-2} dx dy = A(\sigma)$, the Riemann surface U/Γ is a compact surface of genus p with n_{∞} points removed, n_{∞} being the number of times ∞ occurs among the symbols v_1, \dots, v_n , and Γ has precisely *n* non-conjugate in Γ maximal cyclic elliptic or parabolic subgroups, the order of these subgroups being v_1, \dots, v_n . Note that U/Γ is compact if and only if G/Γ is, and if and only if $n = 0$ or $v_n < \infty$; we call such signatures of compact type.

A Fuchsian group with signature (1) is said to represent the *configuration*

$$
\Sigma = (S; P_1, \cdots, P_n)
$$

where S is a compact Riemann surface of genus p and P_1, \dots, P_n are distinct points on S, if there is a conformal bijection $f: U/\Gamma \to S - \{P_{n-n_m+1}, \dots, P_n\}$ such that $f^{-1}(P_j)$ is the image under $U \to U/\Gamma$ of a point $z_j \in U$ fixed under a maximal cyclic subgroup of Γ of order v_j , $j = 1, \dots, n - n_\infty$. The group determines the configuration Σ except for a conformal equivalence and a permutation of the "ramification points" P_j in which each P_i is taken into P_k with $v_i = v_k$. Conversely, given σ and Σ , satisfying (1), (2) and (3), there is a Fuchsian group Γ of signature σ , determined up to conjugacy in G, which represents Σ . This is the *limit circle theorem* of Klein and Poincaré.

We denote by $X(\sigma)$ the set of conjugacy classes $\lceil \Gamma \rceil$ of Fuchsian groups Γ with signature σ . (If $\sigma = (p,0)$ $p > 1$, then $X(\sigma)$ is the space of moduli of compact Riemann surfaces at genus p.) One verifies, for instance by using quasiconformal mappings, that the spaces $X(\sigma)$, with their natural topologies, are metrizable. More precisely, the topology of $X(\sigma)$ can be derived from the Teichmüller metric defined as follows: the distance between $[\Gamma]$ and $[\Gamma']$ is the smallest number α

such there is a quasiconformal automorphism ω of U, with dilatation e^{α} and with $\omega\Gamma\omega^{-1} = \Gamma'$. The spaces $X(\sigma)$ also have natural complex structures (see [2] and the references given there) which we need not use here.

Theorem 1 is equivalent to the following

THEOREM 1'. The subset of $X(\sigma)$ corresponding to groups Γ such that $|\text{trace } \gamma| \geq 2 + \varepsilon > 2$ for all hyperbolic $\gamma \in \Gamma$, is compact.

We denote by diam Γ the diameter of U/Γ measured in the Riemannian metric induced on U/Γ by the Poincaré metric $\left| \frac{dz}{y} \right|$ in U. This diameter is finite if and only if U/Γ is compact.

LEMMA 1. Let σ be of compact type. The subset of $X(\sigma)$ corresponding to *groups* Γ with diam $\Gamma \leq \alpha < \infty$ *is compact.*

PROOF. Let Γ be a group of signature (1), and let $z_0 \in U$ be not a fixed point of an elliptic element of Γ . The *Dirichlet region* $\Pi(\Gamma, z_0)$ is the set of all $z \in U$ such that the Poincaré distance from z_0 to z is not greater than that from z_0 to $\gamma(z)$, $\gamma \in \Gamma$. We recall that $\Pi(\Gamma, z_0)$ is a fundamental (non-Euclidean) polygon for Γ , that the interior angles at all vertices of $\Pi(\Gamma, z_0)$ are $\leq \pi$, with equality possible only if the vertex is fixed under an involution in Γ , and that the sides of $\Pi(\Gamma, z_0)$ are pairwise identified by elements $\gamma_1, \cdots, \gamma_q$ of Γ which generate the group.

The number $2q$ of sides is subject to *Fricke's inequality* (see [4], p. 262)

$$
(4) \hspace{1cm} q \leq 6p + 2n - 3.
$$

(For the sake of completeness, we sketch the argument. Let m be the number of non-equivalent accidental vertices of $\Pi(\Gamma, z_0)$, that is, of vertices which are not elliptic fixed points. Then $2q \geq 3m + n$. On the other hand, $2 - 2p = m + n$ $-q + 1$, by the formula for the Euler characteristic. Inequality (4) follows.)

Let $\{\Gamma_j\}$ be a sequence of Fuchsian groups of signature σ , with diam $\Gamma_j \leq \alpha$. Lemma 1 will be proved if we find a subsequence of $\{\Gamma_i\}$ which converges in $X(\sigma)$.

Let z_0 be a point in U not fixed by an elliptic element of any Γ_i , and set $\Pi_j = \Pi(\Gamma_j, z_0)$. Then all Π_j lie in a closed non-Eulidean disc about z_0 of radius $\alpha/2$. Since all Π_i have non-Euclidean area $A(\sigma)$, it is easy to conclude that there is a $\beta > 0$ such that every Π_i contains a non-Euclidean disc of radius β , about some center ζ_i .

(Indeed, let x_j be a diameter of Π_j of maximal length a_j and y_j a segment of maximal length b_j orthogonal to x_j and contained in Π_j ; all geometric terms

refer to non-Euclidean geometry. Since $a_i \leq \alpha$, the area of Π_i is $\leq \phi(b_i)$, a continuous decreasing function, depending only on α , with $\phi(0) = 0$. Hence there is an α' , $0 < \alpha' < \infty$, such that $b_i \geq \alpha'$. Thus Π_i contains an equilateral right triangle whose legs have length $\alpha'/2$. Such a triangle contains a disc of some fixed radius β .)

Selecting if need be a subsequence, we may assume that $\zeta = \lim \zeta_i$ exists and that there is a number q and there are generators $\gamma_1, \cdots, \gamma_q$ of Γ_1 and isomorphisms $\chi_i: \Gamma_1 \to \Gamma_i$ with the following properties. The $\gamma_1, \dots, \gamma_q$ identify the sides of Π_1 . The $\chi_i(\gamma_1), \cdots, \chi_i(\gamma_q)$ identify the sides of Π_i . The limits $\hat{\gamma}_i = \lim \chi_i(\gamma_i)$ exist in G, $i = 1, \cdots, q$.

Let $\hat{\Gamma}$ be the group generated by $\hat{\gamma}_1, \dots, \hat{\gamma}_q$ and let $\hat{\chi}: \Gamma_1 \to \hat{\Gamma}$ be the epimorphism which takes γ_i into $\hat{\gamma}_i$, $i = 1, \dots, q$. Let γ be in Γ_1 , and not the identity, and set $\hat{y} = \hat{y}(y)$. The non-Euclidean distance between ζ and $\hat{y}(\zeta)$ is at least β . Using this remark one verifies that $\hat{\gamma}$ is an isomorphism, that $\hat{\Gamma}$ is discrete, that $\hat{\Gamma}$ is a Fuchsian group of signature σ , and that $\lim_{t \to \infty} \left[\widehat{\Gamma} \right]$.

LEMMA 2. Let $\sigma = (p, n; v_1, \dots, v_n)$ and $\hat{\sigma} = (p, n; \hat{v}_1, \dots, \hat{v}_n)$ be *signatures such that* $v_j = v_k$ *if and only if* $\hat{v}_j = \hat{v}_k$. Then there is a canonical topological *bijection* $X(\sigma) \rightarrow X(\hat{\sigma})$.

PROOF. Map every $[\Gamma] \in X(\sigma)$ onto a $[\Gamma] \in X(\hat{\sigma})$ such that Γ and $\hat{\Gamma}$ represent the same configuration. By the limit circle theorem, this is a well defined bijection. Every known proof of the limit circle theorem can be used to show continuity. It is particularly simple to use the proof by quasiconformal mappings (see [1]).

To every Fuchsian group Γ we associate a closed Γ invariant subset $\Delta(\Gamma)$ of U defined as follows. For every maximal parabolic subgroup $\Gamma_j \subset \Gamma$ with fixed point ζ_i , let $H(\Gamma_i)$ be the domain interior to a horocycle through ζ_i , chosen so that the quotient $H(\Gamma_i)/\Gamma_j$ has Poincaré area equal to 1. If Γ_j is generated by $z \mapsto z + 1$ (which can be achieved by conjugation), then $H(\Gamma_i)$ is the half-plane $y > 1$. It is known that two points in $H(\Gamma_i)$ are Γ equivalent only if they are Γ_i equivalent, and that $H(\Gamma_j) \cap H(\Gamma_k) = \emptyset$ for $\Gamma_j \neq \Gamma_k$.

We denote by $\Delta(\Gamma)$ the complement in U of the union of all $H(\Gamma_i)$.

(Since the properties of the $H(\Gamma_i)$ stated above are important for our argument, we recall the proof. It suffices to show that if Γ contains the element $\gamma_0(z) = z + 1$, it cannot contain an element $\gamma(z) = (az + b)/(cz + d)$ with $a, b, c, d, \in \mathbb{R}$, $ad - bc$ = 1 and $0 < c < 1$. Assume it does, and set $\gamma_m = \gamma^m \circ \gamma_0 \circ \gamma^{-m}$. Then $\gamma_m(z)$ $a_m(z + b_m)/(c_m z + d_m)$ with $a_m, b_m, c_m, d_m \in \mathbb{R}$, $a_m b_m - c_m d_m = 1$, and $|c_m| = c^m$ \rightarrow 0 as $m \rightarrow \infty$. This contradicts the discreteness of Γ .)

If U/Γ has finite measure, $\Delta\Gamma/\Gamma$ is connected and compact. The reduced diameter, diam* Γ , is defined as the diameter of $\Delta(\Gamma)/\Gamma$ in the Riemannian metric induced by the Poincaré metric on U , that is, as the supremum of the infima of lengths of curves in $\Delta(\Gamma)/\Gamma$ joining pairs of distinct points.

If U/Γ is compact, then diam# $\Gamma = \text{diam } \Gamma$.

LEMMA 3. Let σ and $\hat{\sigma}$ be as in Lemma 2. Assume in addition that $\hat{\sigma}$ is of *compact type and that* $\hat{v}_i \le v_i$, $j = 1, \dots, n$. Let Γ and $\hat{\Gamma}$ be two Fuchsian groups with signatures σ and $\hat{\sigma}$, respectively, which represent the same configuration. *Then*

(5)
$$
\text{diam } \widehat{\Gamma} \leq \text{diam}^* \Gamma + c
$$

where the constant c depends only on σ and $\hat{\sigma}$.

PROOF. Let $\Sigma = (S; P_1, \dots, P_n)$ be the configuration represented by Γ and by $\hat{\Gamma}$. The Poincaré metric in U induces, via the mappings

(6)
$$
U \to U/\Gamma \to S - \{P_{n-n_{\infty}+1}, \cdots, P_n\}, \qquad U \to U/\widehat{\Gamma} \to S,
$$

real analytic Riemannian metrices $ds = \lambda(t) |dt|$ and $d\hat{s} = \hat{\lambda}(t) |dt|$ on $S - \{P_1\}$ \cdots , P_n ; here t is a local parameter. Since the Poincaré metric has curvature (- 1), we have that $\Delta \log \lambda = \lambda^2$, $\Delta \log \lambda = \lambda^2$. If t is a local parameter which vanishes at a point P_i , then for $t \to 0$,

(7)
$$
\lambda(t) \sim \text{const.} |t|^{-1+1/\nu} \quad \text{if} \quad \nu_j = \nu < \infty,
$$

$$
\lambda(t) \sim |t|^{-1} (-\log|t|)^{-1} \quad \text{if} \quad \nu_j = \infty.
$$

Similar formulas hold for $\hat{\lambda}$. The hypothesis $\hat{v}_i \leq v_j$, $j = 1, \dots, n$, together with standard arguments form the theory of quasi-linear elliptic partial differential equations of second order, imply that

$$
d\hat{s} \leq ds.
$$

The set $\Delta(\Gamma)$ corresponds on S to a set D_0 ; the complement $S - D_0$ has n_{∞} components D_1, \dots, D_{n_∞} . Denote the diameters of these sets, in the $d\hat{s}$ metric, by $\hat{\delta}_0, \hat{\delta}_1, \dots, \hat{\delta}_{n_\infty}$. By the inequality just established, $\hat{\delta}_0 \leq \text{diam}^* \Gamma$; thus (5) will be proved once we obtain an estimate

$$
\hat{\delta}_i \leqq c', \qquad i = 1, \cdots, n_\infty
$$

with fixed c'. To get this estimate, note that each D_i is the image, under the

second mapping (6), of a Jordan domain \hat{D}_i in U whose boundary consists of two non-Euclidean segments of the same length r, forming an acute angle $2\pi/\hat{v}_n$ with vertex ξ_i , and of a smooth arc C_i joining the other two endpoints, ξ'_i and ξ''_i , of these segments. The second mapping (6) is one-to-one on \hat{D}_i and on C_i , except for the endpoints of C_i . By (8), the non-Euclidean length of C_i is not greater than the length of the boundary curve of D_i in the ds metric, and the latter is easily seen to be 1. On the other hand, the non-Euclidean length of C_i is at least the non-Euclidean distance between ξ_i and ξ_i . This gives an upper bound, call it \hat{r} , for r, depending only on \hat{v}_n . Thus the non-Euclidean diameter of \hat{D}_i is at most $1 + 2\hat{r}$, and (9) follows.

LEMMA 4. The subset of $X(\sigma)$ corresponding to groups Γ with diam[#] Γ $\leq \alpha$ < 0 *is compact.*

PROOF. Let $\hat{\sigma}$ be as in Lemma 3. The subset considered is closed. Its image in $X(\hat{\sigma})$ under the canonical mapping of Lemma 2 lies in a compact set, in view of Lemmas 3 and 1.

LEMMA 5. Let Γ be a Fuchsian group of signature σ , and assume that for *every hyperbolic* $\gamma \in \Gamma$ *we have that* $|\text{trace } \gamma| \geq 2 + \varepsilon > 0$. *Then*

(10) diameF < *c/e*

where c depends only on a.

For $\sigma = (p, 0), p > 1$, this is Mumford's Corollary 1.

PROOF. We assume first that Γ has no torsion. Then the metric *ds* induced on *U*/ Γ by the Poincaré metric in *U* is complete. Let $n = n_{\infty}$ be the number of nonconjugate maximal parabolic subgroups of Γ ; this is also the number of components D_1, \dots, D_n of $U/\Gamma - \Delta(\Gamma)/\Gamma$.

We set

(11)
$$
\epsilon_1 = 2 \operatorname{arccosh} \left(1 + \frac{\epsilon}{2} \right),
$$

so that $\varepsilon_1 \sim 2\sqrt{\varepsilon}$ for $\varepsilon \to 0$. Without loss of generality we assume that

$$
(12) \t\t 0 < \varepsilon_1 < 1.
$$

The condition $|\text{trace } \gamma| \geq 2 + \varepsilon$ for all hyperbolic γ in Γ means that for every such γ , and every $z \in U$, the non-Euclidean distance between z and $\gamma(z)$ is at least ε_1 . In view of the definition of $\Delta(\Gamma)$ and condition (12), the same is true for $z \in \Delta(\Gamma)$

and *every* γ in Γ distinct from the identity. This means, as one sees at once, that every rectifiable closed curve in U/Γ which intersects $\Delta(\Gamma)/\Gamma$ and has non-Euclidean length $\langle \varepsilon_1 \rangle$ is homotopic to a point. It follows that every point in $\Delta(\Gamma)/\Gamma$ is the center of an open non-Euclidean disc in U/Γ of radius $\varepsilon_1/2$. The area of such a disc equals $4\pi \sinh^2(\epsilon_1/2)$.

Let $d = \text{diam}^* \Gamma$ and let Q, Q' be two points on $\Delta(\Gamma)/\Gamma$ whose distance in $\Delta(\Gamma)/\Gamma$ is d. We join Q to Q' by the unique shortest geodesic C in U/Γ , and modify C to obtain a path C_0 in $\Delta(\Gamma)/\Gamma$, leading from Q to Q' and consisting of at most $n + 1$ arcs A_1, \dots, A_r of C and at most n boundary arcs of the regions D_i . Let A_1 be the arc of maximum length among the A_i , and denote this length by d_1 . Then the length of C_0 is at most $(n + 1)d_1 + n$, so that

$$
(13) \t d \leq (n+1)d_1 + n.
$$

Since C is the shortest path between any of its two points, there are at least

$$
(14) \t\t N = [d_1/\varepsilon_1] + 1 \ge d_1/\varepsilon_1
$$

points on A_1 such that the open discs of radius $\varepsilon_1/2$ about these points do not intersect. Hence

(15)
$$
N4\pi\sinh^2(\varepsilon_1/2) \leq A(\sigma).
$$

Inequalities (13) , (14) , (15) show that

(16)
$$
d \leq \frac{(n+1)A(\sigma)}{4\pi} \frac{\varepsilon_1}{\sinh^2(\varepsilon_1/2)} + n,
$$

which, together with (11) , implies (10) .

Assume next that Γ has elements of finite order. By the Fenchel-Fox theorem (see [3]), Γ has a torsion free subgroup $\hat{\Gamma}$ of finite index. This $\hat{\Gamma}$ is a Fuchsian group of signature $\hat{\sigma}$, $\hat{\sigma}$ depending only on σ . The Poincaré metric in U induces metrics *ds* on *U*/ Γ and *ds* or *U*/ $\hat{\Gamma}$ and the natural projection *U*/ $\hat{\Gamma} \rightarrow U/\Gamma$ takes *ds* into *ds*. This projection also maps $\Delta(\hat{\Gamma})/\hat{\Gamma}$ onto $\Delta(\Gamma)/\Gamma$, so that diam* Γ \leq diam* $\hat{\Gamma}$. Since Lemma 5 holds for $\hat{\Gamma}$, it also holds for Γ .

PROOF OF THEOREM 1'. Note that the subset considered is closed and use Lemmas 5 and 4.

We remark that Lemma 5 has a partial converse.

LEMMA 6. Let Γ be a Fuchsian group of signature σ and assume that diam[#] $\Gamma \leq \alpha$. Then $|\text{trace }\gamma| \geq 2 + \varepsilon > 2$ *for all hyperbolic* $\gamma \in \Gamma$, where ε *depends only on* α *and* σ *.*

Vol. 12, 1972 MUMFORD'S COMPACTNESS THEOREM 407

This can be proved from Lemma 4 by verifying that the infimum of $|\text{trace }\gamma|$, γ in Γ and hyperbolic, is a continuous function on $X(\sigma)$. It would be desirable, however, to have a direct proof and an explicit estimate for ε .

REFERENCES

1. L. Bers, *Uniformization by Beltrami equations* Comm. Pure Appl. Math. 14 (1961), 215-228.

2. L. Bers, *Uniformization, moduli andKleinian groups,* Bull, London Math. Soc., to appear.

3. R.H. Fox, *On Fenchel's conjecture about F-Groups,* Mat. Tidsskr. B (1952), 61-65.

4. R.Fricke and F. Klein, *Vorlseungen iiber die Theorie der automorphen Funktionen,* Vol. 1, Teubner, 1897.

5. D. Mumford, *A remark on Mahler's compactness theorem,* Proc. Amer. Math. Soc. 28 (1917), 289-294.

COLUMBIA UNIVERSITY, NEW YORK, N. Y.

AND

TECHNION-ISRAEL INSTITUTE FOR TECHNOLOGY, HAIFA AND

THE WEIZMANN INSTITUTE, REHOVOT